Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 67: 102898, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37757542

RESUMO

TNFα-mediated signaling pathways play a pivotal role in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) by promoting phagocyte inflammatory functions, notably cytokine release and reactive oxygen species (ROS) production by NOX2. In contrast, interleukin-10 (IL-10), a powerful anti-inflammatory cytokine, potently shuts down phagocyte activation, making IL-10 an attractive therapeutic candidate. However, IL-10 therapy has shown limited efficacy in patients with inflammatory diseases. Here, we report that TNFα blocks IL-10 anti-inflammatory pathways in human monocytes, thereby prolonging inflammation. TNFα decreased IL-10-induced phosphorylation of STAT3 and consequently IL-10-induced expression of the major anti-inflammatory factor, SOCS3. Decreased STAT3 phosphorylation was due to a SHP1/2 phosphatase, as NSC-87877, a SHP1/2 inhibitor, restored STAT3 phosphorylation and prevented the TNFα-induced inhibition of IL-10 signaling. TNFα activated only SHP1 in human monocytes and this activation was NOX2-dependent, as diphenyleneiodonium, a NOX2 inhibitor, suppressed SHP1 activation and STAT3 dephosphorylation triggered by TNFα. ROS-induced activation of SHP1 was mediated by the redox-sensitive kinase, Lyn, as its inhibition impeded TNFα-induced SHP1 activation and STAT3 dephosphorylation. Furthermore, H2O2 recapitulated TNFα-inhibitory activity on IL-10 signaling. Finally, NSC-87877 dampened collagen antibody-induced arthritis (CAIA) in mice. These results reveal that TNFα disrupts IL-10 signaling by inducing STAT3 dephosphorylation through a NOX2-ROS-Lyn-SHP1 axis in human monocytes and that inhibition of SHP1/2 in vivo protects against CAIA. These new findings might explain the poor efficacy of IL-10 therapy in patients with inflammatory diseases and suggest that anti-TNFα agents and SHP1/2 inhibitors could improve the therapeutic use of IL-10.


Assuntos
Interleucina-10 , Monócitos , Humanos , Animais , Camundongos , Monócitos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios , Fator de Transcrição STAT3/metabolismo
2.
Biochem Pharmacol ; 177: 113950, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251677

RESUMO

Neutrophils are key cells in innate immunity and inflammation. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to enhance many neutrophil functions such as reactive oxygen species (ROS) production, degranulation and cell survival via the activation of the ERK1/2 pathway. ERK1/2 pathway activation is redox sensitive and could be modulated by ROS. In order to investigate whether NADPH oxidase NOX2-derived ROS could contribute to GM-CSF-induced ERK1/2 phosphorylation, we tested the effect of two selective NOX2 inhibitors, diphenylene iodonium (DPI) and apocynin. Results showed that, while both DPI and apocynin strongly inhibited neutrophil ROS production, only apocynin, but not DPI, inhibited GM-CSF-induced ERK1/2 phosphorylation, suggesting that ROS are not involved in this process. Apocynin did not affect GM-CSF-induced p38MAPKinase phosphorylation, another redox sensitive kinase. Interestingly, apocynin inhibited GM-CSF-induced MEK1/2 and AKT phosphorylation without affecting fMLF-induced phosphorylation of these proteins. GM-CSF is known to inhibit neutrophils apoptosis and to promote cell survival via the AKT-ERK1/2 pathway. In this regard, we found that apocynin also inhibited GM-CSF-induced anti-apoptotic effect in neutrophils. These results suggest that NADPH oxidase NOX2-derived ROS are not involved in GM-CSF-induced ERK1/2 phosphorylation and that apocynin inhibits GM-CSF-induced ERK1/2 phosphorylation pathway independently of its inhibitory action on NADPH oxidase NOX2. Thus, apocynin can exert an anti-inflammatory effect not only by limiting neutrophil ROS production but also by decreasing neutrophil survival at inflammatory site.


Assuntos
Acetofenonas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Neutrófilos/citologia , Fagócitos/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Mucosal Immunol ; 12(1): 117-131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279516

RESUMO

Inflammatory bowel disease (IBD) is characterized by severe and recurrent inflammation of the gastrointestinal tract, associated with altered patterns of cytokine synthesis, excessive reactive oxygen species (ROS) production, and high levels of the innate immune protein, lipocalin-2 (LCN-2), in the mucosa. The major source of ROS in intestinal epithelial cells is the NADPH oxidase NOX1, which consists of the transmembrane proteins, NOX1 and p22PHOX, and the cytosolic proteins, NOXO1, NOXA1, and Rac1. Here, we investigated whether NOX1 activation and ROS production induced by key inflammatory cytokines in IBD causally affects LCN-2 production in colonic epithelial cells. We found that the combination of TNFα and IL-17 induced a dramatic upregulation of NOXO1 expression that was dependent on the activation of p38MAPK and JNK1/2, and resulted into an increase of NOX1 activity and ROS production. NOX1-derived ROS drive the expression of LCN-2 by controlling the expression of IκBζ, a master inducer of LCN-2. Furthermore, LCN-2 production and colon damage were decreased in NOX1-deficient mice during TNBS-induced colitis. Finally, analyses of biopsies from patients with Crohn's disease showed increased JNK1/2 activation, and NOXO1 and LCN-2 expression. Therefore, NOX1 might play a key role in mucosal immunity and inflammation by controlling LCN-2 expression.


Assuntos
Colite/imunologia , Colo/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Lipocalina-2/metabolismo , NADPH Oxidase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Colite/induzido quimicamente , Colo/patologia , Grupo dos Citocromos b/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-17/metabolismo , Mucosa Intestinal/patologia , Lipocalina-2/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 1/genética , NADPH Oxidases/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA